The IVIS® SpectrumBL is an advanced high-throughput 2D and 3D optical imaging system designed to improve quantitative outcomes of bioluminescent, chemiluminescent and Cerenkov in vivo imaging.
false falseYou successfully added item(s) to your cart
For research use only. Not for use in diagnostic procedures.
The SpectrumBL supports 10 mice simultaneous imaging for true high throughput imaging for longitudinal studies to support large cohorts of mice. It uses a patented optical imaging technology to facilitate non-invasive longitudinal monitoring of disease progression, cell trafficking and gene expression patterns in living animals.
Features & Benefits:
21 CFR Part 11 Compatible | No |
---|---|
Height | 206.0 cm |
Imaging Modality | Optical Imaging |
Length | 77.0 cm |
Portable | No |
Product Brand Name | IVIS |
Width | 65.0 cm |
The Xenogen XGI-8 Gas Anesthesia System is designed to work with the IVIS Imaging System, a technology from Xenogen that allows researchers to use r eal-time in vivo imaging to monitor and record cellular and genetic activity within a living organism.
Auto-exposure technical note for IVIS pre-clinical imaging systems
Subtracting Background ROI from a Sequence
DLIT setup and acquisition IVIS pre-clinical imaging systems. Bioluminescence Tomography or Diffuse Light Imaging Tomography (DLIT) utilizes the data obtained from a filtered 2D bioluminescent sequence in combination with a surface topography to represent the bioluminescent source in a 3D space. Utilizing DLIT, you can determine the depth of sources in your animal and calculate the absolute intensity of that source.
DLIT 2 Topography technical note for IVIS Spectrum imaging system. The IVIS Spectrum has a laser galvanometer that we routinely use to project the FOV onto the surface of the instrument. It produces the green outline you see on the stage when the door is opened. We utilize this laser to project a series of parallel lines across your subject. We acquire a photographic image (the Structured Light Image) when the lines are projected across the animal and from that image we can calculate the height at points on the back of your subject based on the curvature of these laser lines as they cross over the subject. This height map allows us to reconstruct a shell or isosurface of your animal. This shell is referred to as the Surface Topography and is used in calculating bioluminescent signal depth and intensity during the DLIT 3D source reconstruction.
DLIT 3 Reconstruction technical note for IVIS Spectrum imaging systems
Determine Saturation for IVIS imaging systems - technical note
Technical notes for Drawing ROIs for IVIS in vivo imaging systems. The circle, square, free draw, or grid (for well plates) can be used to draw your ROIs. ROI selections,are user-specific and are dependent on the model being analyzed. It is irrelevant which shape that is used for a particular ROI.
Acquisition of High Resolution Images. This quick reference guide is for those researchers who wish to perform analysis that requires high resolution including in vitro studies when one may want to discern aspects about cell layers, ex vivo tissue imaging, or imaging of tissue slices. You will not need this resolution in most in vivo studies.
Acquiring the most accurate quantitation of your bioluminescent sources requires a close understanding of the underlying kinetics involved in producing and capturing the detected light. After injection, the substrate for your bioluminescent probe will di
Subject ROI using IVIS imaging systems