AlphaLISA® Acceptor beads conjugated to a anti-mouse IgG3. This bead can be used to create no-wash AlphaLISA assays for isotyping and other applications.
true falseYou successfully added item(s) to your cart
For research use only. Not for use in diagnostic procedures.
Features:
These AlphaLISA Toolbox Acceptor beads enable antibody binding studies or the detection of mouse IgG3antibodies from various sources in various matrices. The IgG3 subtype plays a role in immune responses against protein antigens and the affinity of IgG3 subtypes are often higher than that of IgG1.
These beads can be used in conjunction with Alpha Donor beads for use in AlphaLISA no-wash assays for isotyping or antibody binding studies. In a typical AlphaLISA assay, 1 mg of Acceptor beads is sufficient to run 1,000-2,000 wells using a 50 µL reaction volume.
AlphaScreen® and AlphaLISA® are bead-based assay technologies used to study biomolecular interactions in a microplate format. The acronym "Alpha" stands for amplified luminescent proximity homogeneous assay. As the name implies, some of the key features of these technologies are that they are non-radioactive, homogeneous proximity assays. Binding of molecules captured on the beads leads to an energy transfer from one bead to the other, ultimately producing a luminescent/fluorescent signal. To understand how a signal is produced, one must begin with an understanding of the beads. AlphaScreen and AlphaLISA assays require two bead types: Donor beads and Acceptor beads. Each bead type contains a different proprietary mixture of chemicals, which are key elements of the AlphaScreen technology. Donor beads contain a photosensitizer, phthalocyanine, which converts ambient oxygen to an excited and reactive form of O2, singlet oxygen, upon illumination at 680 nm. Please note that singlet oxygen is not a radical; it is molecular oxygen with a single excited electron. Like other excited molecules, singlet oxygen has a limited lifetime prior to falling back to ground state. Within its 4 µsec half-life, singlet oxygen can diffuse approximately 200 nm in solution. If an Acceptor bead is within that proximity, energy is transferred from the singlet oxygen to thioxene derivatives within the Acceptor bead, subsequently culminating in light production at 520-620 nm (AlphaScreen) or at 615 nm (AlphaLISA). In the absence of an Acceptor bead, singlet oxygen falls to ground state and no signal is produced. This proximity-dependent chemical energy transfer is the basis for AlphaScreen's homogeneous nature.
Antibody Conjugates | Anti-mouse IgG3 |
---|---|
Automation Compatible | Yes |
Bead Type or Core Bead Type | AlphaLISA Acceptor |
Detection Method | Alpha |
Experimental Type | In vitro |
Product Brand Name | AlphaLISA |
Shipping Condition | Blue Ice |
Unit Size | 250 µg |
Alpha has been used to study a wide variety of interactions, including protein:protein, protein:peptide, protein:DNA, protein:RNA, protein:carbohydrate, protein:small molecule, receptor:ligand, and nuclear receptor:ligand interactions. Both cell-based and biochemical interactions have been monitored, and applications such as phage display, ELISA, and EMSA (electrophoretic mobility shift assay) have been adapted to Alpha.
This guide presents the simple conversion of an ELISA or other immunoassay to an AlphaLISA® immunoassay.
AlphaScreen® and AlphaLISA® are bead-based assay technologies used to study biomolecular interactions in a microplate format. The acronym “Alpha” stands for Amplified Luminescent Proximity Homogeneous Assay. The assay does not require any washing steps. Binding of proteins or other binding partners captured on the beads leads to an energy transfer from one bead to the other, ultimately producing a luminescent signal.
Alpha technology is homogeneous and non-radiometric with distinct features that makes it enabling in comparison to other proximity assays. Alpha technologies represent powerful means of detecting and characterizing a wide range of proteins including antibodies.